
Differentiation as a (co)homological result

AXEL GASTALDI†

Friday 18th October, 2024

After the great era of classical geometry, new algebraic tools were born to solve
geometrical problems. Theses tend to generalize some results on manifolds by the
study of their smooth functions commutative algebras. This algebraic setting leads
naturally to the introduction of non-commutative geometry while consider bigger
classes of algebra which are non-necessarily commutative. Deep non-commutative
machines have been developed to understand theses algebras, as K-theory, algebraic
(co)homologies, characteristic classes, etc...

The main purpose of this talk is to understand the notion of differentiation on a
manifold as a (co)homological result on its functions algebra. This result is due to
Hochschild-Kostant-Rosenberg known as HKR-theorem. The notion of differentiation
we want to extend is encapsulated in the data of vector fields and differential forms.
They will correspond to derivations and differential forms over an algebra.

Top Alg

Manifolds M A Algebras

Vector fields Γ pTMq DerpAq Derivations

Differential forms Γ pT ‹Mq Ω1A Algebraic differential forms

C8p´q

Through the smooth functions functor C8p´q, we will present purely algebraic defini-
tions of vector fields and differential forms. It will turn out this algebraic point of view
encapsulates deep structures and can be recovered via (co)homological tools.

1 Algebraic differential forms and derivations

We know that any smooth vector field X on a manifold M over k “ R, C corresponds a
linear map

X : C8pMq ÝÑ C8pMq

f ÞÝÑ Xpfq : px ÞÑ B ÝÑ

Xpxq
fq ,

where Bt´u is the directional derivative, and verifies for any two smooth maps f, g P

C8pMq :
Xpfgq “ fXpgq `Xpfqg.
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In order to mimic the geometric situation from an algebraic point of view, we fix
A to be an algebra over k “ R, C and we define the following.

DEFINITION 1.1 Let M be a bimodule over A. A derivation D over M is a (k-)linear map
D : A Ñ M respecting the Leibniz rule :

Dpabq “ aDpbq `Dpaqb. (1)

We will write DerpA,Mq for the space of derivations over M .

Naturally, any vector field X P XpMq on a manifold M is a derivation over its
algebra of smooth functions and the contrary is also true, which is

Γ pTMq “ XpMq
„

ÝÑ DerpC8pMqqq (2)

The space of geometric differential forms Ω1M :“ Γ pT ‹Mq corresponds to the C8pMq-
module-dual (which we will denote p´q_) of the space XpMq. Indeed, as Γ pM,Eq_ “

Γ pM,E‹q for any finite dimensional fiber bundle E over M , we naturally write :

XpMq_ » Ω1M and XpMq » pΩ1Mq_.

To imitate the situation, we want the algebraic differential forms Ω1A to be the
A-module-dual of DerpAq, which is :

DerpAq » HomApΩ1A,Aq,

i.e. we want to associate in a one-to-one correspondence any derivation to a A-linear
map Ω1A Ñ A. To obtain this we will exhibit what we call a universal derivation on A.

DEFINITION 1.2 A universal derivation over A is a derivation d : A Ñ M such that for
any other derivation D : A Ñ N , it exists a A-bilinear map ψD :M Ñ N making commute
the the following diagram :

A M

N

d

D
ψD

Remark(s) Any universal derivation has the same space of arrival since for any other
universal derivation d1 : A Ñ M 1, we obtain maps ψ1

d :M Ñ M 1 and ψd :M
1 Ñ M which

are inverses of each other :
A M

M 1

d

d1
ψ1
d ψd

DEFINITION 1.3 The space of algebraic differential forms Ω1A over A is the space
of arrival of a universal derivation over A.

Now, by definition of algebraic differential forms, the map D ÞÑ ψD defines the
isomorphism :

DerpAq » HomApΩ1A,Aq. (3)

The space Ω1A turns out to be the A-module-dual of DerpAq, as expected. We say that
Ω1A represents the functor Derp´q.
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As the arrival space of the universal derivation d, the space of algebraic differential
forms is naturally generated by elements of the form a0dpa1qa2 with a0, a1, a2 P A. But
because of the Leibniz rule (1), a0dpa1qa2 “ a0dpa1a2q ´ a0a1da2 and then :

Ω1A “ xa0da1 | a0, a1 P Ay. (4)

We may wonder what does the space of universal derivations look alike with the com-
mutative algebra A “ C8pMq.

LEMMA 1.1 A universal derivation on C8pMq is given by the following, for any f P

C8pMq :
df : x P M ÞÑ p

Ñ
vx ÞÑ BÑ

vx
fq P T ‹M

where
Ñ
vx P TxM .

Proof. We take a derivation on C8pMq, which is a vector field X P XpMq. If we define
ψX : Ω1C8pMq Ñ C8pMq to be the evaluation at X, we show that d is universal :

ψXpdfqpxq “ dfpxqp
Ñ

Xpxqq “ B Ñ

Xpxq
f “ Xpfqpxq.

QED.

Since Ω1C8pMq is generated by elements of the form fdg, for f, g P C8pMq, we
obtain as a direct corollary the description :

Γ pT ‹Mq “ Ω1M
„

ÝÑ Ω1C8pMq, (5)

which is analogous to (2). In other words, the algebraic definitions of derivations and
differential forms give a generalization of the usual geometrical ones.
What may interests us is to understand how far an algebra is close to be commutative.
This data in encapsulated in the (co)homology of Hochschild.

2 Hochschild homology

We still take A to be an (unitary) algebra over k “ R, C.
We define the Hochschild complex with coefficients in a A-bimodule M to be :

C‹pA,Mq : 0 M M bA M bAb2 ¨ ¨ ¨ M bAbn ¨ ¨ ¨
b b b b b b

where the differential b is given by :

bpmb a1 b ¨ ¨ ¨ b anq :“
n´1
ÿ

i“1

p´1qimb a1 b ¨ ¨ ¨ b aiai`1 b ¨ ¨ ¨ b an

`ma1 b a2 b ¨ ¨ ¨ b an ` p´1qnanmb a1 b ¨ ¨ ¨ b an´1

In low degrees we have :
bpmb a1q “ ma1 ´ a1m,

bpmb a1 b a2q “ ma1 b a2 ´mb a1a2 ` a2mb a1,

...

LEMMA 2.1 One may check that b ˝ b “ 0.
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DEFINITION 2.1 We define the Hochschild homology with coefficients in a A-bimodule
M to be the data of the vector spaces :

HHnpA,Mq :“ HnpC‹pA,Mqq.

When M “ A, we use the notation HH‹pAq :“ HH‹pA,Aq.

For example, let us compute the 0th-degree homology group for M “ A. It is given by :

HH0pAq “ kerpb : A Ñ 0q{Impb : AbA Ñ Aq “ A{xa0a1 ´ a1a0y “ A{rA,As.

It calculates the degree of commutativity of the algebra. In particular, if A is commu-
tative, HH0pAq “ A.

LEMMA 2.2 If A is commutative, then :

HH1pAq » Ω1A.

Proof. The 1st-degree homology group is given by :

HH1pAq “ kerpb : AbA Ñ Aq{Impb : AbAbA Ñ AbAq.

As A is commutative, bpa0 b a1q “ a0a1 ´ a1a0 “ 0, so the kernel of b : A b A Ñ A is
exactly AbA. We naturally define the map :

φ : AbA ÝÑ Ω1A, a0 b a1 ÞÝÑ a0dpa1q.

Then the differential b : AbAbA Ñ AbA given in terms of differential forms is

pφ ˝ bqpa0 b a1 b a2q “ a0a1dpa2q ´ a0dpa1a2q ` a0dpa1qa2,

because A is supposed commutative. The fact that d is a derivation, tells us that φ ˝ b
is always zero and that the only way for φ to vanish is that we are in the image of b.
The map φ descends as an isomorphism in the quotient φ : HH1pAq Ñ Ω1A, which is
the expected result. QED.

3 Hochschild cohomology

We define the Hochschild co-complex with coefficients in a A-bimodule M to be :

C‹pA,Mq : 0 M HomApA,Mq ¨ ¨ ¨ HomApAbn,Mq ¨ ¨ ¨
b‹ b‹ b‹ b‹ b‹

where the differential b‹ is given by :

pb‹fqpa1 b ¨ ¨ ¨ b anq “

n´1
ÿ

i“1

p´1qi`1fpa1 b ¨ ¨ ¨ b aiai`1 b ¨ ¨ ¨ b anq`

` a1 ¨ fpa2 b ¨ ¨ ¨ b anq ` p´1qnfpa1 b ¨ ¨ ¨ b an´1q ¨ an

In low degree we have :
pb‹aqpa1q “ aa1 ´ a1a

pb‹fqpa1 b a2q “ ´fpa1a2q ` a1fpa2q ` fpa1qa2

...
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LEMMA 3.1 One may check that b‹ ˝ b‹ “ 0.

DEFINITION 3.1 We define the Hochschild cohomology with coefficients in a A-bimodule
M to be the data of the vector spaces :

HHnpA,Mq :“ HnpC‹pA,Mqq.

When M “ A, we use the notation HH‹pAq :“ HH‹pA,Aq.

As before let us compute the 0th-degree cohomology group for M “ A. It is given by :

HH0pAq “ kerpb‹ : A Ñ HomApA,Aqq{Impb‹ : 0 Ñ Aq “ kerpa ÞÑ pa1 ÞÑ aa1 ´ a1aqq “ ZpAq.

As in the homology case, it compute the degree of commutativity of A. If A is commu-
tative, then its center is as bigger as possible, which is HH0pAq “ A.

LEMMA 3.2 If A is commutative, then

HH1pAq » DerpAq.

Proof. The 1st-degree cohomology group is given by :

HH1pAq “ kerpb‹ : HomApA,Aq Ñ HomApAbA,Aqq{Impb‹ : A Ñ HomApA,Aqq.

As A is commutative, pb‹aqpa1q “ aa1 ´ a1a “ 0 so we quotient by a trivial space. Now,

pb‹fqpa1 b a2q “ ´fpa1a2q ` a1fpa2q ` fpa1qa2

is zero exactly when f is a derivation (see 1), which gives the expected result. QED.

To conclude, we have shown that algebraic derivation and differential forms could
be obtained as (co)homological results. We will show with deeper arguments that we
have analogous descriptions in higher degrees.

4 Tor derived functor

Regarding any A-bimodule as a module over the algebra AbAop, we are interested in
the functor :

AbAop ´ mod ÝÑ A´ mod
M ÞÝÑ M{rA,M s “ M bAbAop A

(6)

With M “ A, we know that HH0pAq “ AbAbAop A.

LEMMA 4.1 For any algebra A, the functor ´ bAbAop A is left-exact.

Naturally, as any left-exact functor in a category of modules we want to compute
its derived functor. To do so, we need sufficiently what we call a free resolution.

DEFINITION 4.1 A free resolution of a A-bimodule M is a complex pP‹, Bq such that all
the Pi are free over A and such that the following is exact :

0 A P0 P1 ¨ ¨ ¨
ϵ B B
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THEOREM 4.2 For any free resolution of the A-bimodule A, we have :

HH‹pAq “ H‹ppP‹, Bq bAbAop Aq

HH‹pAq “ H‹pHomAbAopppP‹, Bq, Aqq

The main example of free resolutions that can compute this (co)homology are the
Koszul complexes, that we will present in the following section.

5 Koszul complexes

We still fix A to be an algebra over k “ R, C. Koszul complexes are natural free
resolutions for A-modules of the form A{I for a nice enough ideal I Ă A.

DEFINITION 5.1 Let s : Ar Ñ A be a A-linear map. We define the Koszul complex
associated to s as :

KpA, sq : 0 A Ar
Ź2Ar ¨ ¨ ¨

Źr´1Ar
Źr Ar 0

Bs Bs Bs Bs Bs

where the differential is given by :

BspA1 ^ ¨ ¨ ¨ ^Anq :“
n

ÿ

i“1

p´1qi`1spAiq ¨A1 ^ ¨ ¨ ¨ ^ xAi ^ ¨ ¨ ¨ ^An.

A trivial example of Koszul complex is associated to the A-linear map ¨x : A Ñ A of
multiplication by an element x P A :

KpA, ¨xq : 0 A A 0
¨x

The linear map s : Ar Ñ A can always be decomposed as a sum of product of
elements of A, i.e. it always exists x1, ¨ ¨ ¨ , xr P A such that :

spa1, ¨ ¨ ¨ , arq “

r
ÿ

i“1

aixi.

Also, one can check that KpA, sq “
Âq

i“1KpA, ¨xiq, where the tensor product in taken
over the chain complexes category.

DEFINITION 5.2 We say that px1, ¨ ¨ ¨ , xrq P Ar is a regular sequence if xi is not a divisor
of zero in A{px1, ¨ ¨ ¨ , xi´1q, for all i.

PROPOSITION 5.1 If s “ px1, ¨ ¨ ¨ , xrq P Ar is a regular sequence, then KpA, sq defines a
free resolution of the algebra A{px1, ¨ ¨ ¨ , xrq.

Proof. It is clear that every KpA, sqn is free over A, and that the cokernel of Bs : A
r Ñ A

is A{px1, ¨ ¨ ¨ , xrq in that case. QED.

Example(s) If X “
řq
i“0 fi B{Bxi is a vector field over a q-dimensional manifold M , then

the space of smooth functions over the vanishing points of X can be obtained as a
quotient of C8pMq by an ideal :

C8pX´1p0qq » C8pMq{pf1, ¨ ¨ ¨ , fqq.

If furthermore the vector field is generated by a regular sequence pf1, ¨ ¨ ¨ , fqq, which is
that X is of maximal rank, the Koszul complex KpA, pf1, ¨ ¨ ¨ , fqqq defines a free resolu-
tion of the algebra C8pX´1p0qq.
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As any A-linear map s : Ar Ñ A is by definition an element of pArq_, we also have
another complex :

K 1pA, sq : 0
Źr

pArq_
Źr´1

pArq_ ¨ ¨ ¨ pArq_ A 0
s^¨ s^¨ s^¨ 1ÞÑs

But the isomorphism
Ź‹

pArq_ »
Źr´‹ Ar sends the differential s ^ ¨ to Bs, which gives

the isomorphism of complexes K 1pA, sq » KpA, sq.

Example(s) As the space of differential forms is the C8pMq-module-dual of XpMq, then
for any vector field X P XpMq, the two following complexes compute the same homol-
ogy groups :

0
Źr XpMq

Źr´1XpMq ¨ ¨ ¨ XpMq C8pMq 0

0 C8pMq Ω1M ¨ ¨ ¨ Ωr´1M ΩrM 0

X^¨ X^¨ X^¨ 1ÞÑX

ιX ιX ιX ιX

PROPOSITION 5.2 For every A-linear map s : Ar Ñ A :

KpA, sq_ » KpA, sqrrs, (7)

where p´qrrs means that we shifted the complex by r degrees.

Proof. Via the description p
Ź‹ Arq

_
»

Ź‹
pArq_, the differential B_

s becomes p´1qrs ^ ¨,
which gives KpA, sq_ » K 1pA, sqrrs. With the remark above, we obtain the expected
result. QED.

This property is know as the Koszul self-duality. It is responsible of lot of dualities
that we can recover with statements in equivariant homotopy theory, derived cate-
gories and representation theory.

Now, to fit Koszul complexes in our study, we need the following statement.

LEMMA 5.3 When a manifold M with commutative algebra A “ C8pMq is a complete
intersection, the kernel of the multiplication m : A b Aop Ñ A is generated by a regular
sequence pB1, ¨ ¨ ¨ , Bqq P pAbAopqq where q “ dimpMq.

Thanks to this result, we know that in these circumstances, the Koszul complex
K :“ KpAbAop, pB1, ¨ ¨ ¨ , Bqqq defines a resolution of AbAop{ kerpmq, which is naturally
isomorphic to A. In other words, when A “ C8pMq is the commutative algebra of a
complete intersection, we can compute its Hochschild (co)homology as follows :

HH‹pAq “ H‹pK bAbAop Aq,

HH‹pAq “ H‹pHomAbAoppK, Aqq.

THEOREM 5.4 (HKR-theorem) If A “ C8pMq is the commutative algebra of a complete
intersection, then :

HHnpAq » ΩnA and HHnpAq »

n
ľ

DerpAq. (8)
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Proof. We have to understand the Koszul complex K through the functors ´ bAbAop A
and HomAbAopp´, Aq. First of all, the copy of A “ A b Aop{ kerpmq at the right kills any
occurrence of the multiplication map. But in all the terms of the Koszul differential
on K appears a certain multiplication by Bi. In other words, the differentials in
K bAbAop A and HomAbAoppK, Aq are both zero. So we have :

HHnpAq “ Kn bAbAop A and HHnpAq “ HomAbAoppKn, Aq.

Also, K is determined by a regular sequence of length the dimension of the underlying
manifold, which gives the description

Źn
pAbAopqq » ΩnpAbAopq. It follows by straight

computations on base changes that :

HHnpAq “ ΩnpAbAopq bAbAop A » ΩnA,

HHnpAq “ HomAbAoppΩnpAbAopq, Aq » HomApΩnA,Aq »

n
ľ

DerpAq.

QED.

Remark(s) These isomorphisms are really often denoted ε, and are known as anti-
symmetrization map. These are canonical and define an natural chain complex ho-
motopy from two distinct resolutions of a commutative algebra as a bimodule over
itself.

The Hochschild-Kostant-Rosenberg theorem is the key point that justify the study
of algebras for the understanding of manifolds. This approach is relevant as the
Hochschild (co)homology of a commutative algebra is nothing else than the space of
sections over a vector bundle : some purely topological informations are encapsulated
in purely algebraic computations.
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